考研数学:求偏导数的三种方法分析_苏州大学考研分数线
2018-08-24 12:11
来源:文都
作者:
高等数学的内容基本可划分为一元函数和多元函数两大块,其中多元函数包括多元函数微分学和多元函数积分学,而偏导数的计算是多元函数微分学的基础。所谓偏导数就是将多元函数中的某个自变量看作变量,而将其它自变量看作常量,对该变量的导数就称为多元函数对它的偏导数。计算偏导数的方法有多种,下面考研数学的蔡老师对这些不同的方法做些分析和比较,供学习高等数学和复习考研数学的同学们参考。
比较上面两种方法,对于本题来讲,显然方法1比方法2简捷。此题若按偏导定义求导,则再其它点处计算较麻烦。
从前面的分析和典型例题看到,求多元函数在某点处的偏导数可以使用三种方法,即:按定义求导、先求导后代值和先代值后求导,但要注意的是,并不是所有问题都可以同时使用这三种方法,有些问题只能使用其中的一种或两种方法,另外,有些问题使用某种方法很简单,但使用其它方法却很麻烦,因此,同学们在具体计算时要选择恰当的方法和灵活运用。
新东方重庆学校微信(微信号:xdf_cq)
最新考试资讯、教育新闻,请扫一扫二维码,关注我们的官方微信!
版权及免责声明
①凡本网注明"稿件来源:新东方"的所有文字、图片和音视频稿件,版权均属新东方教育科技集团(含本网和新东方网) 所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他任何方式复制、发表。已经本网协议授权的媒体、网站,在下载使用时必须注明"稿件来源:新东方",违者本网将依法追究法律责任。
② 本网未注明"稿件来源:新东方"的文/图等稿件均为转载稿,本网转载仅基于传递更多信息之目的,并不意味着赞同转载稿的观点或证实其内容的真实性。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。如擅自篡改为"稿件来源:新东方",本网将依法追究法律责任。
③ 如本网转载稿涉及版权等问题,请作者见稿后在两周内速来电与新东方网联系,电话:010-60908555。